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THE LEADING EDGE EFFECT IN UNSTEADY NATURAL
CONVECTION ON A VERTICAL PLATE WITH TIME-
DEPENDENT SURFACE TEMPERATURE OR HEAT FLUX

KoicHI MIZUKAMI
Kobe University of Mercantile Marine, Higashinada-ku, Kobe, 6358, Japan
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Abstract—The propagation of the leading edge effect in unsteady natural convection on a semi-infinite
vertical plate whose surface was subject to temperature or heat flux increasing exponentially with time
or to a power-function change in temperature or in heat flux was analysed by means of the method
of Goldstein and Briggs. The influence of the type of transient could be expressed in terms of several
time-variables. Approximate expressions applicable also to other types of transient were derived.
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NOMENCLATURE
thermal diffusivity;
dimensionless heat-transfer coefficient
defined by equation (42);

dimensionless heat-transfer coefficient at

the end of pure conduction;
steady dimensionless heat-transfer
coeflicient;

specific heat;

function defined by equation (16);
function defined by equation (19);
function defined by equation (68);
function, see equation (80);
modified Grashof number;
acceleration of gravity;

function defined by equation (21);
function defined by equation (60);
function, see equation (81);
heat-transfer coefficient;

function, see equation (22);
function, see equation (23);
function, see equation (24);
function, see equation (35);

local Nusselt number;

exponent of a power function;
function, see equation (36);
Prandtl number;

function, see equation (61);
e-folding time;

heat input;

surface heat flux;

function, see equation (69);
function defined by equation (74);
function, see equation (82);
function, see equation (75);
elapsed time;

dimensionless fluid velocity, see
equations (11) and (14);

fluid velocity;

dimensionless fluid velocity, see
equation (56);
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X(n,n), dimensionless penetration distance, see

equations (12) and (13);

X, vertical distance from the leading edge
or penetration distance;

Xps penetration distance;

X pmaxs maximum penetration distance;

Y(n,{), dimensionless penetration distance, see
equation (57);

¥ horizontal distance from the surface of
the plate;

Yo horizontal distance where the leading
edge effect penetrates most deeply;

V1 horizontal distance where the fluid

velocity is maximum.

Greek symbols

o, constant;

B, coefficient of thermal expansion;
P constant;

9, constant;

&, constant;

¢, = J/(t/p);

s = y2 J(av);

Mo, = yo/2 \/(at);

N1, = y1/2/(at);

0, rise in fluid temperature;
0., surface temperature rise;
K, constant;

2, thermal conductivity;

v, kinematic viscosity;

o, density;

74,...,T5, time-variables;

T9,> 19> Tgs Tq1» Tg2s
reduced times defined by equations (1)
and (47)-(50).
1. INTRODUCTION
UNSTEADY laminar natural convection in the vicinity
of a semi-infinite vertical flat plate was first studied by
Sugawara and Michiyoshi [1]. Using a method of

successive approximations, they solved the boundary-
layer equations for a step change in surface tempera-
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ture. The surrounding fluid was assumed to be initially
at rest and to have a uniform temperature. It was found
that at the initial stage heat transfer was by purely one-
dimensional conduction normal to the surface and that
natural convection developed gradually, while the
duration necessary for the steady convection to be
established was very short.

Siegel [2] utilized the Karman-Pohlhausen type of
equations for a step change both in surface temperature
and in surface heat flux, and obtained by means of the
method of characteristics the time at which one-
dimensional conduction terminated and the time at
which steady state was reached. He pointed out that
the leading edge of the plate was responsible for the
transition from conduction to convection. The fluid
sufficiently far from the leading edge behaved as if the
plate were doubly infinite in length, so that the velocity
distribution in this region was independent of the
vertical distance and hence the convective heat transfer
was zero. The two-dimensional influence which caused
the boundary-layer growth to vary with the vertical
distance gradually propagated from the leading edge
and began to alter the one-dimensional flow configur-
ation at a different time for each position along the
plate.

Goldstein and Briggs [3] applied the differential
equations for a doubly infinite vertical plate to analyse
the propagation of the leading edge effect. This method
will be explained in detail later. Nanbu [4] determined
the limit of purely one-dimensional conduction on the
basis of mathematical singularity which appeared in
the boundary-layer equation. His results showed an
excellent agreement with those of Goldstein and Briggs.

Goldstein and Eckert [5] experimentally studied the
transient process for a step change in heat input.
Gebhart and Dring [6] observed the propagation of
the leading edge effect and found that it actually
travelled up the plate somewhat faster than predicted
by Goldstein and Briggs.

All above investigations were made for a step change
in surface temperature, surface heat flux and/or heat
input. A more general problem is to investigate the
influence of the type of transient of enforced quantity,
for example, the exponent in the case of a power-
function change. Mizukami and Sakurai [7] carried
out experiments for two types of transient of heat
input, namely, heat input increasing exponentially with
time and that increasing linearly with time. The data
suggested that the reduced time [8, 9] was important
in unsteady natural-convection heat transfer rather
than the elapsed time itself since the influence of the
type of transient was almost entirely included in this
reduced time. The reduced time was defined in terms
of the heat input Q and the elapsed time ¢ as follows:

1 t

To=—1| Qdr,. (N

Y J 0o

In a similar fashion the propagation of the leading

edge effect for a transient of surface temperature or of

heat flux is also expected to be described by one time-
variable. It is this point to be studied in this paper.
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In the present analysis, considered are four types of
transient, i.e. a power-function change in surface heat
flux and in surface temperature, surface temperature
increasing exponentially with time and surface heat
flux increasing exponentially with time.

2. ANALYTICAL METHOD

The method of Goldstein and Briggs [3] is utilized
in the present analysis. As stated in the previous
Section, heat transfer at the initial stage is by one-
dimensional conduction, and the leading edge is re-
sponsible for the transition from conduction to con-
vection. Upon commencement of the unsteady process,
therefore, one may consider that the fluid moves up
from the leading edge as a wave, in front of which the
velocity and the temperature are only functions of the
time and the horizontal distance y from the surface of
the plate. Behind the wave there must be a dependence
on the vertical coordinate x. The basic premises used
in the method are that the convective effect will begin
al a position x as soon as the fluid which is located
initially at the leading edge rises to this position, and
that the velocity of this fluid is the same as that of the
fluid above it, namely, the velocity predicted from the
unsteady-velocity solutions for a doubly infinite vertical
plate. The penetration distance x, of the fluid located
initially at the leading edge is a function of ¢ and y.
According to the former premise, therefore, the feading
edge effect propagates up to the maximum penetration
distance Xpmax-

The governing equations for unsteady laminar
natural convection on a doubly infinite vertical flat
plate are as follows [3, 10, 117];

Cu ¢t

= v+ ghl 2)
ct cy

o A2
o _ Y (3
—,

ot v
where u, 0, v, § and g are the velocity, the temperature
rise, the kinematic viscosity, the coefficient of thermal
expansion and the thermal diffusivity of the fluid
respectively, and g is the acceleration of gravity. The
initial and boundary conditions are

u(y, ty =0, 0, t) =0 <0 @
u(x, ) =0, u0,t)=0, 0.ty =0 >0
- .08
0(0.y=9, or —/i-— =yq. (53
€Yl o

where £, 0, and g, are the thermal conductivity of the
fluid, the prescribed time-dependent surface tempera-
ture rise and heat flux respectively.

Integrating u with respect to f, one obtains the
penetration distance x,. The maximum penetration
distance X, at any time can be determined by
differentiating x, with respect to y holding t constant
and by setting the derivative equal to zero.

According to the above procedure, the penetration
distance is given as

4
xply ) =1\ uly, t)dty. (&)

Jo
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Consequently, if yo denotes the root of the equation

0x,p

=0, 7
% )

the maximum penetration distance is given as
Xpmax = xp(.VO& t)' (8)

3. A POWER-FUNCTION CHANGE IN SURFACE HEAT
FLUX AND IN SURFACE TEMPERATURE

It is noted that when the transient of surface heat
flux is prescribed as

a o t" ()]
Yw A &y \“J

the surface temperature rise also varies as a power
function of time [12] such that
_ I'(n+1)
— Jpe)T(n+3/2)
where p is the dens1ty of the fluid, and I'(n) is Gamma
function.

If 2n is an integer greater than —2, the velocity and
the penetration distance are expressed as follows;

Vlpchu
9Bg. 12

\/ (pci)x,
gBq.t>"?

where for Prandtl number Pr not equal to unity

225+ 1)
1-Pr

x { i27+3 erfc(y) — %S erfc(\/LPr» (13a)

and for Prandtl number equal to unity

guftoct™? (10)

=Un,n) (11)

= X(n,n), (12)

X(n,n) =

X(p,n)=22"*T(n+ ni>"*+*erfe(n)  (13b)
and
I'(n+1)
Uln,n) = ) X(n,n—1) (14)
with
_ v
=7 fa)

iferfe(n) = | #* terfc(z)dz (k=1,2,3,..)

i%erfe(y) = erfe(y) = \72; f aoexp( —2%)dz

Equation (7) is written in terms of 7 as

ox, 0X
E})—OCEOCF(W,H) (15)
where
1 2n+4 erfc ( ) 2n+4 erfc( )
F( = \/P \/P 16
mn= (16)

Pr#1
2% 4 erfe(n) — ni®* 3 erfe(y), Pr=1.
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Substituting the root 5, of equation (15) for  in equa-
tion (12), one obtains the relationship between the
elapsed time and the maximum penetration distance
as follows;

\/(pcj-)xpmax
9Bq.t*?

By replacing X . in equation (17) by x and by re-
arranging it, the relationship between the time ¢ and
the position x up to which the leading edge effect
propagates can be written as

= X (110, n). an

2/5
9Ban 1™, _ Gen, P, (18)
Wlpch)x)
where
G(n, Pr) = {X(no, m)} 2", (19)

By virtue of equation (10), equation (18) can be ex-
pressed in an alternative form as

1/2
(gi 9”) t = H(n, Pr), (20)
where
T(r+3/2) -1
H(n, Pr) = {m X(no, n)} 1

Numerical calculation of the values of 1o, G(n, Pr),
H(n, Pr) was performed for a number of combinations
of Pr and n on an electronic digital computer. Some
of the results are shown in Figs. 1-3. These figures
suggest that the following good approximate ex-
pressions hold:

G(n, Pr) = (n+a)I(Pr) (22)

H(n, Pr) = (n+y)J(Pr) 23)
iz = (n+Jd)K(Pr), (24)
Mo
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FIG. 1. Dependence of G(n, Pr)on n.
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Table 1. Values of the constants and the functions

Pr 1(Pr) o J(Pr) v K(Pr) B} N{(Pr) 3 O(Pr) [
0.01 1.17 1.58 1.20 1.90 60.7 3.02 1.27 1.17 1.42 144
0.02 1.22 1.58 1.26 1.90 383 2.96 1.36 L17 1.57 1.43
0.05 1.31 1.57 1.38 1.89 214 2.90 1.53 1.16 1.88 1.42
0.1 1.41 1.57 1.51 1.89 14.0 2.86 1.72 1.16 223 142
02 1.53 1.57 1.68 1.89 9.39 2.83 1.98 1.15 276 141
0.5 1.76 1.57 2.00 1.89 5.69 2.80 2.50 1.15 3.93 1.40
1 2.00 1.57 235 1.89 3.98 2.80 3.10 1.15 542 1.40
2 232 1.57 283 1.89 2.84 2.80 397 1.15 7.85 1.40
5 291 1.57 375 1.89 1.88 2.83 5.79 11s 13.8 141
10 353 1.57 4.77 1.89 1.40 2.86 7.98 1.16 223 1.42
20 434 1.57 6.18 1.89 1.07 2.90 1.3 1.16 YR 1.42
50 5.84 1.58 8.94 1.90 0.766 296 18.5 1.17 8.5 143
100 7.39 1.58 12.0 1.90 0.607 302 274 17 i42 1.44
where o, y and J are constants, and I(Pr), J(Pr) and in Table 1. From this table one obtains
K(Pr) are functions of Pr. Values of the constants and % =157 3)
functions were determined for each value of Pr by }"
means of the least square technique, and are tabulated v =189 {26)
0=209. 27
40
By introducing variables 1,, 7, and 1, defined as
4 .
Ty = {28)
n+ao
30
' {29)
Ty = . 2
z n+vy '
N : {30y
N T3 = 1,
2o *Toats :
I
equations (18}, (20) and (24) become
e 12/5
—gﬁ&— 1y = I{Pr) (21)
Jlped)x
10}
/ 0.\
Iy (gﬂ ) = J(Pr) (32)
,’Il:/:r : X
""r"::” : 4art
ol =2 = K(Pr). (33)
2 40 2 3 4 5 Yo
n . -
FiG. 2. Dependence of H(n, Pr) on n. Thesg equations express the influence of the type of
transient of surface temperature and of surface heat
50 flux on the propagation of the leading edge effect in a
simple manner through variables 7,, 7, and 73 only.
If 7, [ = y1//(at}] is the root of the equation
u oU
40 —oc—oc Flg,n—1)=0, (34)
dy dn
the velocity takes the maximum value ug,, at n = ;.
30 After similar rearrangement and calculation, it was
. found that the following approximate expressions
= hold:
4 2/3
0 _gﬁqw—} 4 = N(P) (35)
 (PCA imax
O
%—-15 = O(Pr), (36)
0 Umax
where N(Pr) and O(Pr) are functions of Pr, and
t )
‘[4 = e (37)
0 n+e
¢
n Ts I l;x)
n+K

F1G. 3. Dependence of 5o on 1.
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with ¢ and x as constants. Values of N(Pr), O(Pr),
¢ and «x for each value of Pr are shown in Table 1.
From this table

e=1.16 (39)

k=142 (40)
Thus the influence of the type of transient on the
maximum velocity again is almost entirely included in
14 and t5. Referring to equations (15), (24) and (34),
one readily obtains the following equation from which
the root 7, can approximately be evaluated:

L (140K (P
m

41)

The propagation of the leading edge effect and the
related quantities were found to be simply formulated
by introducing the time-variables 1, through s, which
almost entirely include the influence of n, namely, the
influence of the type of transient of surface heat flux
and temperature.

Now consider the dimensionless heat-transfer coef-
ficient

Nu,
TG
Nu, and Gr* are the local Nusselt number and the

modified Grashof number respectively, and are defined
as

42)

hx
Nu, = — 43
o= )
gBgwx*
Gr*=—lv—2——, (44)

where h is the heat-transfer coefficient. If B, and B,
denote the dimensionless heat-transfer coefficient at
the end of pure conduction and the steady one corre-
sponding to the same surface heat flux respectively,
then the difference between B; and B, for a step change
in the surface heat flux is known as “overshoot”. The
heat-transfer coefficient at the end of pure conduction
is obtained from equation (10) as

< B _ Tln+32)/(pcd)
"6, T+t

Elimination of t from equations (18) and (45) and
rearrangement yield

(45)

_ Tn+3/2)Pr¥s
B = T(n+1)/G(n, Pr)’ “6)

Table 2. A comparison between the dimensionless heat-
transfer coefficient at the end of pure conduction and the
steady one corresponding to the same surface heat flux

Bz
Pr B
n=0 n=0.5 n=1 n=2
0.1 0.263 0.238 0.263 0.277 0.294
1 0.534 0.501 0.553 0.584 0.620
10 0.944 0.948 1.045 1.104 1.172
100 1.556 1.641 1.811 1914 2.032
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Values of B, were given in [13] for several values of Pr.
A comparison between B, and B, is made in Table 2.
As n in increased, B, tends to increase. For a step
change and for smaller values of Pr, B, is less than B,.

4. APPROXIMATE EXPRESSIONS
Since the surface heat flux is a power function of
time, the following rough approximate expressions hold
for the variables 7, through 5 introduced in the
previous section:

1 t
Ty xT9=—1| 6,di;

(47)
wJO0
t
JJ qwdta dt,
Tty =0 48)
'[ qwdtl
o
t 'ty 2
J‘ qwdt3dt2dt1
T3 = qu = 2 Or (:1 (49)
Jj qwdtzdtl
0Jo
1t
T4 =Ty =— deh (50)
qw., ]
Ts =~ Tg. (51)

The reduced times 1y, 7,, 741 and 7,5, which are very
similar to the reduced time defined by equation (1),
depend only on the surface heat flux or temperature.
By combining, for example, equations (47), (48) and (49)
with equations (31), (32) and (33) respectively, useful
approximate equations which describe the propagation
of the leading edge effect can be obtained as follows;

gba. |*°
{ \/(pcl)x} 19 = I(Pr) (52)
6w 172
(gi ) Tyt = J(PY) (53)
4a
%=K(Pr). (54)

The above equations, however, have a somewhat in-
convenient aspect such that in utilizing, for example,
equation (52) 7, must be computed from the change
in surface temperature, although the surface heat flux
is prescribed.

5. SURFACE TEMPERATURE INCREASING
EXPONENTIALLY WITH TIME

The reduced times in the previous section seem to
play a significant role also in the unsteady natural
convection induced by other types of transient of sur-
face temperature or of heat flux. The approximate
expressions derived in the previous section are of the
form applicable in many other cases, which is illus-
trated in this chapter for the case of an exponentially
increasing surface temperature, i.e. 0,, oc exp(/p), where
p is the e-folding time. It is noted that in this case

g = V(pch)
w \/p

{erf(C) + 717% exp(— Cz)}ﬂw, (55)
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where
{=J/p)
2 ¢
erf({) = 7 f exp(—z?)dz.
VTt Jo

The reduced times are zero when { is zero, and tend
to p as { becomes large.

The velocity and the penetration distance are ob-
tained as

=V, (56)

u
gbpo,,

i, = Y00, (57)

where V{(n,{) and Y(», {) are functions of # and {, but

are too lengthy to be written here. Substitution of the
root 7, of the equation

Oxp
6

for n in equation (52) ylelds an expression similar to

equation (20):
g ﬁ@w N1i2
()

H(, Pr) = {Y(no, Pr)} 172

6
— Y= (58)

= H((, Pr), (59)

where
(60)

Values of o and H((, Pr) were computed for a number
of combinations of { and Pr. The reciprocal of H({, Pr)
increased and tended to a certain finite value as (
became large. The ratio H({ = oo, Pr)/H({, Pr) is shown
in Table 3 together with 1,,/p. In practice, H({ = 5, Pr)
was used instead of H({ = oo, Pr). This table indicates
that the ratio is almost independent of Pr, that is, it
can be written as

H({ = o0, Pr)
H(, Pr)

where P({) is a function of { only. Now let 7, be defined
as follows;

= P(0), (61)

= pP(). (62)

Then, eliminating H({, Pr) from equations (59) and (61)
and using equation (62), one obtains

Y12
(g———ﬂew) 1, = H({ = o0, Pr).
x

This equation, as well as equation (32), indicates that
the influence of the type of transient is entirely included
in one time-variable 1,. Table 6 shows the values of
H{({ = o0, Pr)together with the values of J(Pr) obtained
in Section 3. As readily seen from this table, the
following equation holds within 1%:

(63)

H{{ = oo, Pr) = J(Pr). 64)
Table 3 implies also that
@)~ (65)
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or

{66)

T2 = Ty

Therefore the approximate expression, equation (53), is
valid also for surface temperature increasing exponen-
tially with time.

Elimination of 8,, from equations (63) and (55) yields

{ 9B
Jpci)x

2/5
} p = GI(g, Pr), (67)

where

G(C, Pr) = {H((, Pri}*? {erf(g) + l‘ﬂ,,?

4 TG

2{5
)} . (68)

The ratio G({ = oo, Pr)/G({, Pr) is demonstrated in
Table 4 together with 74/p. Again one may set
G( = oo, Pr)

= R(¢ '
GC.Pn (), {69)

where R({) is a function of { only, which is nearly equal
to 1,/p. From equations (67) and (69)

2/5
{ I } =G =%, P, (70
JlpcA)x
where
11 = pR({} ~ 14 {71
Further, as seen from Table 6,
G{{ = oo, Pr)y = I{Pr). (72)

Therefore, equation (31) is applicable if the variable <,
is defined by equation (71). Equation (52) is valid
without any modification. It is seen from equation
(68) that

G({ = 00, Pr) = {H({ = o, Pri}*S, (73)

Define a function S({, Pr) as

S(, Pr) (74)

=37
Mo

Then S({, Pr) has features similar to those of H({, Pr)
and G({, Pr). The ratio S({ = oo, Pr)/S({, Pr) is tabu-
lated in Table 5 together with 7,,/p. It can be written as

S(g = o0, Pr) 42

= T({) =~ ~—. {75)
OS¢ P p
If the variable 13 is defined as
73 = pT({) ~ Tq2» (76)
combination of equations (74)~(76) yeilds
dat, .
——= S{{ = o0, Pr). (77
Vo
Further, as seen from Table 6,
S = oo, Pry = K(Pr). (78)

Therefore equations (33) and (54) are also applicable.
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Table 3. Values of H({ = oo, Pr)/H({, Pr) for 8,, «c exp({?) and comparison with 7,4/p

987

{ Pr=0001 Pr=001 Pr=0.1 Pr=1 Pr=10 Pr=100 Pr=1000 Tq1/P
0.25 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.041
0.5 0.164 0.165 0.167 0.167 0.167 0.165 0.164 0.156
0.75 0.334 0.336 0.338 0.339 0.338 0.336 0.334 0.332
1 0.518 0.521 0.524 0.525 0.524 0.521 0.518 0.507
1.25 0.685 0.688 0.692 0.693 0.691 0.688 0.685 0.680
1.5 0.815 0.818 0.821 0.822 0.821 0818 0.815 0.815
1.75 0.904 0.906 0.908 0.909 0.908 0.906 0.904 0.906
2 0.956 0.957 0.958 0.959 0.958 0.957 0.956 0.958
225 0.982 0.983 0.983 0.984 0.983 0.983 0.982 0.984
2.5 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.995

Table 4. Values of G({ = o, Pr)/G({, Pr) for 8,, « exp({?) and comparison with t4/p

{ Pr=0.001 Pr=001 Pr=0.1 Pr=1 Pr=10 Pr =100 Pr=1000 To/D
0.25 0.058 0.058 0.058. 0.058 0.058 0.058 0.058 0.061
0.5 0.206 0.207 0.208 0.209 0.208 0.207 0.206 0.221
0.75 0.395 0.397 0.399 0.400 0.399 0.397 0.395 0.430
1 0.579 0.582 0.585 0.586 0.585 0.582 0.579 0.632
1.25 0.734 0.736 0.739 0.740 0.739 0.736 0.734 0.790
1.5 0.847 0.849 0.852 0.853 0.852 0.849 0.847 0.895
1.75 0.922 0.923 0.925 -0.926 0.925 0.923 0922 0.953
2 0.964 0.965 0.966 0.967 0.966 0.965 0.964 0.982
225 0.986 0.986 0.987 0.987 0.987 0.986 0.986 0.994
2.5 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.998

Table 5. Values of S{{ = oo, Pr)/S((, Pr) for 8,, o exp((?) and comparison with t,,/p

4 Pr=0001 Pr=001 Pr=0.1 Pr=1 Pr=10 Pr=100 Pr=1000 T42/P
0.25 0.023 0.025 0.026 0.027 0.026 0.025 0.023 0.025
0.5 0.089 0.097 0.103 0.105 0.103 0.097 0.089 0.097
0.75 0.193 0.210 0223 0.228 0.223 0.210 0.193 0.210
1 0.328 0.353 0.373 0.380 0.373 0.353 0.328 0.353
1.25 0.480 0.512 0.535 0.544 0.535 0.512 0.480 0.509
1.5 0.633 0.666 0.690 0.699 0.690 0.666 0.633 0.660
1.75 0.768 0.798 0818 0.825 0.818 0.798 0.768 0.789
2 0.872 0.893 0.907 0.912 0.907 0.893 0.872 0.884
225 0.939 0.952 0.959 0.962 0.959 0.952 0.939 0.945
2.5 0.975 0.981 0.985 0.986 0.985 0.981 0.976 0.977

Table 6. Comparisons of H({ = oo, Pr) with J(Pr), of G({ = oo, Pr) with I(Pr),
and of S({ = co, Pr) with K(Pr)
Pr H( = 0, Pr) J(Pr) G( = o, Pr) I(Pr) §({ = oo, Pr) K(Pr)
0.001 1.07 1.08 1.06 1.08 314 312
0.01 1.19 1.20 1.15 1.17 61.1 60.7
0.1 1.50 1.51 1.38 1.41 14.1 140
1 233 2.35 1.97 2.00 4.00 3.98
10 473 4.77 347 353 1.41 1.40
100 11.9 120 7.26 7.39 0.611 0.607
1000 340 34.2 168 17.1 0314 0.312
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6. SURFACE HEAT FLUX INCREASING
EXPONENTIALLY WITH TIME
If the surface heat flux is increased exponentiaily
with time, ie. g, oc exp({?), then the surface tempera-
ture rise is related to the surface heat flux by the
following equation;
0= g erf(().
Jped)
The propagation of the leading edge effect is again
described as

{79)

»gﬁqw s — (R :
{\:"(pd)x} p = G*(. Pr) (80)
s U Y* 172
(gﬂ ) p = Hr P (81)
N X,
1 .
o35 =S¥, Pr), (82)

Mo

where G*((, Pr), H*({, Pr) and S*({, Pr) are functions
of { and Pr. As a result of calculation, the behaviors
of G*((, Pr), H*((, Pry and S*({, Pr) were found quite
similar to those of G((, Pr), H((, Pr) and S({, Pr) respec-
tively. Consequently, the same type of equations and
conclusions as those derived in Section 5 were obtained.
In particular, the values of G¥({ = o, Pr), H¥({{ = oo, Pr)
and S*({ = oo, Pr) precisely accorded with those of
G({ =0, Pr), H({ =oc, Pr) and S({ = o0, Pr) respec-
tively. This result is expected since the surface tem-
perature rise is proportional to the surface heat flux
when ( is sufficiently large.

7. SUMMARY OF THE RESULTS

The propagation of the leading edge effect in un-
steady natural convection on a semi-infinite vertical
plate was analysed for a power-function change and
also for an exponential-function change in surface heat
flux and in surface temperature. It was found that the
influence of the type of transient can be expressed in
terms of time-variables, each of which is nearly equal
to one of the reduced times. The utility of approximate
expressions in terms of the reduced times was
illustrated.

8. CONCLUDING REMARKS
In this analysis the leading edge effect is assumed
to propagate with the velocity determined from the
temperature profile induced by unsteady conduction.
Therefore the transition of the heat-transfer regime
from conduction to convection is closely related with

KoicH MIzukAMi

the fashion how this profile varies with time. This is
also the case as to the stability of fluid layer with a
time-dependent temperature profile. The onset of con-
vection in fluid unsteadily heated from below was
found to depend on the reduced time t, [14]. This
arises because there exists, in an approximate sense,
one-to-one correspondence between a temperature
profile and a value of the reduced time in the unsteady
conduction heat transfer [15].
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EFFET DE BORD D’ATTAQUE DANS UNE CONVECTION NATURELLE
INSTATIONNAIRE SUR UNE PLAQUE VERTICALE, AVEC TEMPERATURE
DE SURFACE OU FLUX THERMIQUE DEPENDANT DU TEMPS

Résumé—Par la méthode de Goldstein et Briggs, on analyse la propagation de I'effet de bord d'attaque

dans la convection naturelle sur une plaque verticale et semi-infinie dont la surface est soumise & une

température ou A un flux de chaleur croissant exponentiellement avec le temps, ou bien & un changement

en fonction-puissance de la température ou du flux. L'influence du type d’évolution peut étre exprimee

en termes de plusieurs variables temporelles. On donne des expressions approchées applicables & d’autres
types d’évolution.
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DER ANSTROMKANTENEFFEKT BEI INSTATIONARER, NATURLICHER
KONVEKTION AN EINER VERTIKALEN PLATTE MIT ZEITABHANGIGER
OBERFLACHENTEMPERATUR ODER WARMESTROMDICHTE

Zusammenfassung—Nach den Methoden von Goldstein und Briggs wird die Fortpflanzung des

Anstromkanteneffekts bei instationirer, natiirlicher Konvektion an einer halbunendlichen, vertikalen

Platte untersucht. Fiir die Oberflichentemperatur oder die Wirmestromdichte wurde eine zeitliche

Zunahme nach einer Exponential —bzw. Potenzfunktion angesetzt. Der Einflul der Art der Transiente

konnte durch verschiedene Zeitvariablen erfat werden. Fiir andere Transienten wurden Niherungs-
l6sungen abgeleitet.

BJINAHUWE NEPEJHEN KPOMKU HA TIPOLIECC HECTALIMOHAPHOH

ECTECTBEHHOW KOHBEKLIMM HA BEPTUKAJIBHON TIJIACTUHE NPU

U3MEHSAEMOI CO BPEMEHEM TEMITEPATYPE ITOBEPXHOCTU WJIU
BEJIMYMHE TEIUIOBOI'O INMOTOKA

Ammoraims — C nomoupio Merona [onbawrteiina U Bpurrca aHanmsupyercs 3GdeKkr nepenHeir
KPOMKH TIPH HECTALMOHAPHON eCTECTBEHHOH KOHBEKUHH HAa NOJYOECKOHEMHOH BEPTHKAJBHON IUIa-
CTHHE, TEMINEPATyPa NOBEPXHOCTH KOTOPOii MIIH BEJIMYHHA MOJBOJMMOTrO TEIOBOTO MOTOKA YBEIH~
YUBAIOTCS HKCIOHEHLHAIBEHO CO BPEMEHEM HITH H3MEHAIOTCA MO CTeneHHOH dyHKuuM. Bnusuue THna
HECTaLHOHAPHOCTA MOXHO OIHCAaTh C IIOMOLUBIO HECKOJILKHX BPEMEHHLIX NepeMeHHbIX. [Ipu-
OnMKEHHBIE BBIPAXEHHA IPUMEHUMDbI TIKKE I8 APYTHX HECTALMOHAPHBIX YCIOBHIM.
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