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Abstract--The propagation of the leading edge effect in unsteady natural convection on a semi-infinite 
vertical plate whose surface was subject to temperature or heat flux increasing exponentially with time 
or to a power-function change in temperature or in heat flux was analysed by means of the method 
of Goldstein and Briggs. The influence of the type of transient could be expressed in terms of several 

time-variables. Approximate expressions applicable also to other types of transient were derived. 
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NOMENCLATURE 

thermal diffusivity; 
dimensionless heat-transfer coefficient 
defined by equation (42); 
dimensionless heat-transfer coefficient at 
the end of pure conduction; 
steady dimensionless heat-transfer 
coefficient; 
specific heat; 
function defined by equation (16); 
function defined by equation (19); 
function defined by equation (68); 
function, see equation (80); 
modified Grashof number; 
acceleration of gravity; 
function defined by equation (21); 
function defined by equation (60); 
function, see equation (81); 
heat-transfer coefficient; 
function, see equation (22); 
function, see equation (23); 
function, see equation (24); 
function, see equation (35); 
local Nusselt number; 
exponent of a power function; 
function, see equation (36); 
Prandtl number; 
function, see equation (61); 
e-folding time; 
heat input; 
surface heat flux; 
function, see equation (69); 
function defined by equation (74); 
function, see equation (82); 
function, see equation (75); 
elapsed time; 
dimensionless fluid velocity, see 
equations (11) and (14); 
fluid velocity; 
dimensionless fluid velocity, see 
equation (56); 

X(q, n), dimensionless penetration distance, see 
equations (12) and (13); 

x, vertical distance from the leading edge 
or penetration distance; 

xp, penetration distance; 
Xpr, ax, maximum penetration distance; 
Y(q, 0, dimensionless penetration distance, see 

equation (57); 
y, horizontal distance from the surface of 

the plate; 
Y0, horizontal distance where the leading 

edge effect penetrates most deeply; 
yl, horizontal distance where the fluid 

velocity is maximum. 

Greek symbols 
a, constant; 
r, coefficient of thermal expansion; 
y, constant; 
5, constant; 
e, constant; 
~, = , f i t~p) ;  
th = y/2 x/(at); 
'70, = yo/2 ~/(at); 
th, = ys/Z~/(at); 
O, rise in fluid temperature; 
Ow, surface temperature rise; 
x, constant; 
2, thermal conductivity; 
v, kinematic viscosity; 
p, density; 
zl , . . . ,  Ts, time-variables; 

zQ, Zo, zq, zql, zq2, 
reduced times defined by equations (1) 
and (47)-(50). 

1. INTRODUCTION 

UNSTEADY laminar natural convection in the vicinity 
of a semi-infinite vertical fiat plate was first studied by 
Sugawara and Michiyoshi [1]. Using a method of 
successive approximations, they solved the boundary- 
layer equations for a step change in surface tempera- 
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ture. The surrounding fluid was assumed to be initially 
at rest and to have a uniform temperature. It was found 
that at the initial stage heat transfer was by purely one- 
dimensional conduction normal to the surface and that 
natural convection developed gradually, while the 
duration necessary for the steady convection to be 
established was very short. 

Siegel [2] utilized the Karman-Pohlhausen type of 
equations for a step change both in surface temperature 
and in surface heat flux, and obtained by means of the 
method of characteristics the time at which one- 
dimensional conduction terminated and the time at 
which steady state was reached. He pointed out that 
the leading edge of the plate was responsible for the 
transition from conduction to convection. The fluid 
sufficiently far from the leading edge behaved as if the 
plate were doubly infinite in length, so that the velocity 
distribution in this region was independent of the 
vertical distance and hence the convective heat transfer 
was zero. The two-dimensional influence which caused 
the bouhdary-layer growth to vary with the vertical 
distance gradually propagated from the leading edge 
and began to alter the one-dimensional flow configur- 
ation at a different time for each position along the 
plate. 

Goldstein and Briggs [3] applied the differential 
equations for a doubly infinite vertical plate to analyse 
the propagation of the leading edge effect. This method 
will be explained in detail later. Nanbu [4] determined 
the limit of purely one-dimensional conduction on the 
basis of mathematical singularity which appeared in 
the boundary-layer equation. His results showed an 
excellent agreement with those of Goldstein and Briggs. 

Goldstein and Eckert [5] experimentally studied the 
transient process for a step change in heat input. 
Gebhart and Dring [6] observed the propagation of 
the leading edge effect and found that it actually 
travelled up the plate somewhat faster than predicted 
by Goldstein and Briggs. 

All above investigations were made for a step change 
in surface temperature, surface heat flux and/or heat 
input. A more general problem is to investigate the 
influence of the type of transient of enforced quantity, 
for example, the exponent in the case of a power- 
function change. Mizukami and Sakurai [7"] carried 
out experiments for two types of transient of heat 
input, namely, heat input increasing exponentially with 
time and that increasing linearly with time. The data 
suggested that the reduced time [8, 9] was important 
in unsteady natural-convection heat transfer rather 
than the elapsed time itself since the influence of the 
type of transient was almost entirely included in this 
reduced time. The reduced time was defined in terms 
of the heat input Q and the elapsed time t as follows: 

'fo r e = ~  Qdtl .  (1) 

In a similar fashion the propagation of the leading 
edge effect for a transient of surface temperature or of 
heat flux is also expected to be described by one time- 
variable. It is this point to be studied in this paper. 

MIZUKAM! 

In the present analysis, considered are four types of 
transient, i.e. a power-function change in surface heat 
flux and in surface temperature, surface temperature 
increasing exponentially with time and surface heat 
flux increasing exponentially with time. 

2. ANALYTICAL M E T H O D  

The method of Goldstein and Briggs [3] is utilized 
in the present analysis. As stated in the previous 
Section, heat transfer at the initial stage is by one- 
dimensional conduction, and the leading edge is re- 
sponsible for the transition from conduction to con- 
vection. Upon commencement of the unsteady process, 
therefore, one may consider that the fluid moves up 
from the leading edge as a wave, in tront of which the 
velocity and the temperature are only functions of the 
time and the horizontal distance y from the surface of 
the plate. Behind the wave there must be a dependence 
on the vertical coordinate x. The basic premises used 
in the method are that the convective effect will begin 
at a position x as soon as the fluid which is located 
initially at the leading edge rises to this position, and 
that the velocity of this fluid is the same as that of the 
fluid above it, namely, the velocity predicted from the 
unsteady-velocity solutions for a doubly infinite vertical 
plate. The penetration distance xp of the fluid located 
initially at the leading edge is a function of t and y. 
According to the former premise, therefore, the leading 
edge effect propagates up to the maximum penetration 
d i s t a n c e  Xpmax, 

The governing equations for unsteady laminar 
natural convection on a doubly infinite vertical flat 
plate are as follows [3, 10, 11]; 

?u ~2u 
= = v i ~  ~ + g/~0 i2i 
¢:I 

i~O ~20 
- = a = ~ ,  i3i 
(~ t Cy 

where u, O, v, fl and a are the velocity, the temperature 
rise, the kinematic viscosity, the coefficient of thermal 
expansion and the thermal diffusivity of the fluid 
respectively, and g is the acceleration of gravity. The 
initial and boundary conditions are 

{ uly, t) = O, 0(~, t) = 0 t < 0 
{4~ 

u(~,,t) O, uiO, t )=O.  O(~s,t)=O t > O  

O(O.t)=9,,. ~r - 2 - - i  = q ,  {5~ 

where 2, O, and q,. are the thermal conductivity of the 
fluid, the prescribed time-dependent surface tempera- 
ture rise and heat flux respectively. 

Integrating u with respect to t, one obtains the 
penetration distance x r The maximum penetration 
distance Xpm,~ at any time can be determined by 
differentiating xp with respect to y holding t constant 
and by setting the derivative equal to zero. 

According to the above procedure, the penetration 
distance is given as 

~t ! 
xp{y, t )=t  u(3'tljd/~" (6) 
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Consequently, if ye denotes the root of the equation 
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Substituting the root ~0 of equation (15) for r7 in equa- 
tion (12), one obtains the relationship .between the 
elapsed time and the maximum penetration distance 
as follows; 

a*, - () 
ay- ’ 

the maximum penetration distance is given as 

Xpmsx = -gYOl t). (8) 

3. A POWER-FUNCTION CHANGE IN SURFACE HEAT 
FLUX AND IN SURFACE TEMPERATURE 

It is noted that when the transient of surface heat 
flux is prescribed as 

qw cc t”, (9) 

the surface temperature rise also varies as a power 
function of time [12] such that 

ow = r(n + 1) 

J(wW(n+ 3/2) 
qw Jt a tn+“2, (10) 

where p is the density of the fluid, and r(n) is Gamma 
function. 

If 2n is an integer greater than -2, the velocity and 
the penetration distance are expressed as follows; 

J(PC4U 
___ = WI, 4 
gP9w t3’2 

J(PWP ___ = WI, 4, 
9B9wt5’2 

(11) 

(12) 

where for Prandtl number Pr not equal to unity 

Xh n) = 
22”+5r(n+ 1) 

l-t? 

x i2”c5 

1 

erfc(q) - iznt5 erfc JL 
( >I Jpr 

(13a) 

and for Prandtl number equal to unity 

X(rl, n) = 2 2n+41-(n+ l)f7i2”+4erfc(~) (13b) 

and 

WI, n) = 
r(n+ 1) 
-Xhn-1) 

r(n) 
(14) 

with 
Y 

V = 2 J(ut) 

s ‘x. 

ik erfc($ = ik-’ erfc(z) dz (k = 1,2,3, . . .) 
rl 

i” erfc(rt) = erfc(q) = J- 
Jn vm s 

exp( - z2) dz. 

Equation (7) is written in terms of g as 

where 

WI, 4 = 
i 

ax, a ax a F(q, n) = 0, 
a~ aq 

1 
---i2n+4erfc -Y 
JPr ( J Jpr 

-i2”+4erfc(q), 

Pr # 1 

li 2”+4erfc(q)- qi2”+3erfc(q), Pr = 1. 

(15) 

(16) 

JC PC4XPrnax 

s&w t 5’2 
= X(VO, 4. (17) 

By replacing xprmx in equation (17) by x and by re- 
arranging it, the relationship between the time t and 
the position x up to which the leading edge effect 
propagates can be written as 

2’s 
t = G(n, Pr), (18) 

where 

G(n, Pr) = {X@IO, n)>- 
z/5 

. (19) 

By virtue of equation (lo), equation (18) can be ex- 
pressed in an alternative form as 

gmv 1’2 c-1 x 
t = H(n, Pr), (20) 

where 
-l/2 

X(v0, n) (21) 

Numerical calculation of the values of qo, G(n,Pr), 
H(n, Pr) was performed for a number of combinations 
of Pr and n on an electronic digital computer. Some 
of the results are shown in Figs. l-3. These figures 
suggest that the following good approximate ex- 
pressions hold : 

G(n, Pr) = (n+a)l(Pr) (22) 

H(n, Pr) = (n+ y)J(Pr) (23) 

f = (n+G)K(Pr), (24) 

FIG. 1. Dependence of G(n, Pr) on n 
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Table 1. Values of the constants and the functions 

Pr l(Pr) ~ 3(Pr) ;, K(Pr) 3 

0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1 
2 
5 

10 
20 
50 

100 

1.17 1.58 1.20 1.90 60.7 3.02 
1.22 1.58 1.26 1.90 38.3 2.96 
1.31 1.57 1.38 1.89 21.4 2.90 
1.41 1.57 1.51 1.89 14.0 2.86 
1.53 1.57 1.68 1.89 9.39 2.83 
1.76 1.57 2.00 1.89 5.69 2.80 
ZOO 1.57 2,35 t,89 3.98 2,80 
2.32 1.57 2.83 1.89 2.84 2.80 
2.91 1.57 335 1.89 1.88 2.83 
3.53 1.57 4.77 1.89 1.40 2.86 
4.34 1.57 6.18 1.89 1.07 2.90 
5.84 158 8.94 1.90 0.766 2.96 
7.39 1.58 12.0 1.90 0.607 3.02 

N(Pr) e, O(Pr) I,: 

1.27 1.17 1.42 1.44 
1.36 1.17 1.57 1.43 
1.53 1.16 1.88 1.42 
1.72 t.16 2.23 1.42 
1.98 1.15 2.76 1.41 
2.50 1.15 3.93 1.4(3 
3.10 I. t 5 5.42 1.40 
3.97 1.15 7.85 IA0 
5.79 1.15 13.8 1.4l 
7.98 1.16 22.3 1.42 

11.3 1.16 37.5 142 
18.5 1.17 785 143 
27.4 1.17 i42 !A4 

where e, 7 and 6 are constants, and l(Pr), J(Pr) and 
K(Pr) are functions of Pr. Values of the constants and 

functions were determined for each value of Pr by 
means of the least square technique, and are tabulated 

-20 

40 I I 

30 

20 

I0 

0 
-2 

/ /  
,~ /~  

/ 

,o- / 6 ~  . 

I I 1 I 
-1 0 1 2 3 4 

FIG. 2. Dependence of H(n, Pr) on n. 
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n 

Fro. 3. Dependence of ~/o on n. 

in Table 1. From this table one obtains 

c~ = 1.57 i25) 

7 = 1.89 i26} 

= 2.9. ~27'~ 

By introducing variables zt, T2 and z3 defined tis 

r 
r l  . . . . . .  ( 28 )  

n+c~ 

g 
z2 . . . . . .  (29) 

n+7  

t 

equations (18), (20) and (24) become 

{_ 0,qw i 
x/(pc2)x j r~ = l(Pr) (31) 

(g~Owy '2 
- -  z2 = d(Pr) {32) 

\ x / 

4az3 
y--~ = K(er) .  (33) 

These equations express the influence of the type of 
transient of surface temperature and of surface heat 
flux on the propagation of the leading edge effect in a 
simple manner through variables %, r2 and z3 only. 

If th [ = y~/x/(at)] is the root of the equation 

~u 3U 
-~- oc ~ -  oc F(t/, n -  1) = 0 (34) 
oy vr/ 

the velocity takes the maximum value u~,~ at ~/= q~. 
After similar rearrangement and calculation, it was 
found that the following approximate expressions 
hold: 

_ 9flqw ~2,, 
x/,(pc2)u,,,~j z4 = N(Pr)  (35) 

g//0~ 
- - - - ' c s  = O(Pr), (361 
Umax 

where N(Pr)  and O(Pr) are functions of Pr, and 
t 

~4 -- (37) 
n q - g  

t 
Zs . . . . . . . . .  (381 

n q - g  
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with e and x as constants. Values of N(Pr), O(Pr), 
e and x for each value of Pr are shown in Table 1. 
From this table 

= 1.16 (39) 

K = 1.42. (40) 

Thus the influence of the type of transient on the 
maximum velocity again is almost entirely included in 
z4 and zs. Referring to equations (15), (24) and (34), 
one readily obtains the following equation from which 
the root q, can approximately be evaluated: 

1 
q2 ( n -  I+6)K(Pr). (41) 

The propagation of the leading edge effect and the 
related quantities were found to be simply formulated 
by introducing the time-variables z~ through Zs, which 
almost entirely include the influence of n, namely, the 
influence of the type of transient of surface heat flux 
and temperature. 

Now consider the dimensionless heat-transfer coef- 
ficient 

Nux 
B = (Gr.)X/------ ~ .  (42) 

Nu~ and Gr* are the local Nusselt number and the 
modified Grashof number respectively, and are defined 
as 

hx 
Nux = - -  (43) 

Gr* = gflqwx4 
2v 2 , (44) 

where h is the heat-transfer coefficient. If Be and Be 
denote the dimensionless beat-transfer coefficient at 
the end of pure conduction and the steady one corre- 
sponding to the same surface heat flux respectively, 
then the difference between Be and B, for a step change 
in the surface heat flux is known as "overshoot". The 
heat-transfer coefficient at the end of pure conduction 
is obtained from equation (10) as 

h = qw F(n + 3/2)x/(pc2 ) 
0--~ = F(n + 1)x/t (45) 

Elimination of t from equations (18) and (45) and 
rearrangement yield 

F(n + 3/2)Pr 2/5 
B~ = F(n + 1)~/G(n, Pr)" (46) 

Table 2. A comparison between the dimensionless heat- 
transfer coefficient at the end of pure conduction and the 

steady one corresponding to the same surface heat flux 

Pr Bs Be 

n = 0  n=0.5 n = l  n= 2  

0.l 0.263 0.238 0.263 0.277 0.294 
1 0.534 0.501 0.553 0.584 0.620 

10 0.944 0.948 1.045 1.104 1.172 
100 1.556 1.641 1.811 1.914 2.032 
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Values of Be were given in [13] for several values of Pr. 
A comparison between Be and B~ is made in Table 2. 
As n in increased, Be tends to increase. For a step 
change and for smaller values of Pr, Be is less than Bs. 

4. APPROXIMATE EXPRESSIONS 

Since the surface heat flux is a power function of 
time, the following rough approximate expressions hold 
for the variables ~1 through ~5 introduced in the 
previous section: 

~1 ~- zo = Owdtl (47) 

f l f o ' q . d t 2  dt, 
~2 ~- T~t = , (48) 

oqwdtl  

T3 "~ z~2 ="  (49) 

f o f i ' q . d t 2  dt '  

1 f'  
z4 ~- "c~ = - -  ] qwdq (50) 

qw3o 

T5 ~- T0. (51) 

The reduced times T0, ~, Tql and T~2, which are very 
similar to the reduced time defined by equation (1), 
depend only on the surface heat flux or temperature. 
By combining, for example, equations (47), (48) and (49) 
with equations (31), (32) and (33) respectively, useful 
approximate equations which describe the propagation 
of the leading edge effect can be obtained as follows; 

gflqw ~2/5 
) . ~ j  z0 = l(Pr) (52) 

(Ofl~Ox~'12z, l=J(Pr) (53) 

4~Tq2 
y2o = K(Pr). (54) 

The above equations, however, have a somewhat in- 
convenient aspect such that in utilizing, for example, 
equation (52) ~o must be computed from the change 
in surface temperature, although the surface heat flux 
is prescribed. 

5. SURFACE TEMPERATURE INCREASING 
EXPONENTIALLY WITH TIME 

The reduced times in the previous section seem to 
play a significant role also in the Unsteady natural 
convection induced by other types of transient of sur- 
face temperature or of heat flux. The approximate 
expressions derived in the previous section are of the 
form applicable in many other cases, which is illus- 
trated in this chapter for the case of an exponentially 
increasing surface temperature, i.e. 0w oc exp(t/p), where 
p is the e-folding time. It is noted that in this case 

qw = x/(pc~.) I 2 - - ~ { e r f ( O + ~ - ~ e x p ( - ,  )}0w, (55) 
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= ~/(~/p) 

erf(O = e x p ( -  z a) dz. 

The reduced times are zero when ~ is zero, and tend 
to p as ~ becomes large. 

The velocity and the penetration distance are ob- 
tained as 

bl 
- -  = V(r/, ~) (56) 
gflpO~ 

xp Y(r/, (), (57) 
gflp20w 

where V(q, 0 and Y(t/, 0 are functions of q and ~, but 
are too lengthy to be written here. Substitution of the 
root q0 of the equation 

~xp oc ? ~-y ~ Y(~/, ~) = 0 (58) 

for q in equation (52) yields an expression similar to 
equation (20): 

p H(( ,  Pr), (59) 

where 

H(( ,  Pr) = { Y(qo, Pr)} -  ,/2. (60) 

Values ofr/o and H((, Pr) were computed for a number 
of combinations of ( and Pr. The reciprocal of H((, Pr) 
increased and tended to a certain finite value as 
became large. The ratio H(( = 0% Pr)/H(~, Pr) is shown 
in Table 3 together with Zql/P. In practice, H(~ = 5,Pr) 
was used instead of H(~ = o% Pr). This table indicates 
that the ratio is almost independent of Pr, that is, it 
can be written as 

H(~ = o% er)  
= P(0, (61) 

H (~, Pr) 

where P(0 is a function of~ only. Now let zz be defined 
as follows; 

"(2 "~- PP(O. (62) 

Then, eliminating H(~, Pr) from equations (59) and (61) 
and using equation (62), one obtains (, 0y 

z2 = H((  = 0% Pr). (63) 

This equation, as well as equation (32), indicates that 
the influence of the type of transient is entirely included 
in one time-variable z2- Table 6 shows the values of 
H((  = oo, Pr) together with the values of J(Pr) obtained 
in Section 3. As readily seen from this table, the 
following equation holds within 1Vo: 

H(~ = ~ ,  Pr) = J(Pr). (64) 

Table 3 implies also that 

P(O ~- zq~ (65) 
P 

o r  

% -~ zql. (66) 

Therefore the approximate expression, equation (53), is 
valid also for surface temperature increasing exponen- 
tially with time. 

Elimination of 0,~ from equations (63) and (55) yields 
gflqw ~2,5 

~ j  p = G(~, Pr), (67) 

where 

G(~,Pr)= {H(~,Pr)} "/5 ~erf(0+ex-p-(;~z!12'5. (681 

The ratio G(~ = oo, Pr) /G(( ,Pr)  is demonstrated in 
Table 4 together with ro/p. Again one may set 

G(( = ~ ,  Pr) 
- R ( 0 ,  (69} 

G((, Pr) 

where R(O is a function of(  only, which is nearly equal 
to zdP. From equations (67) and (69) 

~v/(PCJ~)X j T 1 = G((. = -/., Pr) (701 

where 

zl = pR(O ~- zo. (71) 

Further, as seen from Table 6. 

G(~ = oc, Pr) = l(Pr). (72) 

Therefore, equation (31) is applicable if the variable z~ 
is defined by equation (71). Equation (52) is valid 
without any modification. It is seen from equation 
(68) that 

G(( = ~ ,  Pr) = {H(( = oo, Pr)} 4/5. (73) 

Define a function S(~, Pr) as 

1 
S(~, Pr) - ~2~1 ~ . (74) 

Then S(~, Pr) has features similar to those of H(~, Pr) 
and G(~, Pr). The ratio S(( = oo, Pr)/S(~, Pr) is tabu- 
lated in Table 5 together with %2/P. It can be written as 

S((, = ~ ,  Pr) = T(() - _rq: (75) 
S(~, Pr) p 

If the variable z3 is defined as 

z3 = pT(~) ~ zq2, (76) 

combination of equations (74)-(76) yeilds 

4az3 
y~ = S(( = oo, Pr). (77) 

Further, as seen from Table 6, 

S(( = 0% Pr) = K(Prl .  (781 

Therefore equations (33) and (54) are also applicable. 
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Table 3. Values of H(( = ~ ,  Pr)/H((, Pr) for 0w oc exp((2) and comparison with ~I /P  

987 

( Pr = 0.001 Pr = 0.01 Pr = 0.1 Pr = 1 Pr = 10 Pr = 100 Pr = 1000 z~l/p 

0.25 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.041 
0.5 0.164 0.165 0.167 0.167 0.167 0.165 0.164 0.156 
0.75 0.334 0.336 0.338 0.339 0.338 0.336 0.334 0.332 
1 0.518 0.521 0.524 0.525 0.524 0.521 0.518 0.507 
1.25 0.685 0.688 0.692 0.693 0.691 0.688 0.685 0.680 
1.5 0.815 0.818 0.821 0.822 0.821 0.818 0.815 0.815 
1.75 0.904 0.906 0.908 0.909 0.908 0.906 0.904 0.906 
2 0.956 0.957 0.958 0.959 0.958 0.957 0.956 0.958 
2.25 0.982 0.983 0.983 0.984 0.983 0.983 0.982 0.984 
2.5 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.995 

Table 4. Values of G(( = oo, Pr)/G((, Pr) for 0w oc exp((2) and comparison with zdp  

Pr = 0.001 Pr = 0.01 Pr =0.1 P r = l  P r = l O  P r = l O 0  P r = l O 0 0  zo/p 

0.25 0.058 0.058 0.058. 0.058 0.058 0.058 0.058 0.061 
0.5 0.206 0.207 0.208 0.209 0.208 0.207 0.206 0.221 
0.75 0.395 0.397 0.399 0.400 0.399 0.397 0.395 0.430 
1 0.579 0,582 0.585 0.586 0.585 0.582 0.579 0.632 
1.25 0.734 0.736 0.739 0.740 0.739 0,736 0.734 0.790 
1.5 0.847 0.849 0.852 0.853 0.852 0.849 0.847 0.895 
1.75 0.922 0.923 0.925 " 0.926 0.925 0.923 0.922 0.953 
2 0.964 0.965 0.966 0.967 0.966 0.965 0.964 0.982 
2.25 0.986 0.986 0.987 0.987 0.987 0.986 0.986 0.994 
2.5 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.998 

Table 5. Values of S(( = oo, Pr)/S((, Pr) for 0w oc exp((2) and comparison with z~2/p 

( Pr = 0.001 Pr = 0.01 Pr = 0.1 Pr = 1 Pr = 10 Pr = 100 Pr = 1000 zq2/p 

0.25 0.023 0.025 0.026 0.027 0.026 0.025 0.023 0.025 
0.5 0.089 0.097 0.103 0.105 0.103 0.097 0.089 0.097 
0.75 0.193 0.210 0.223 0.228 0.223 0.210 0.193 0.210 
1 0.328 0.353 0.373 0.380 0.373 0.353 0.328 0.353 
1.25 0.480 0.512 0.535 0.544 0.535 0.512 0.480 0.509 
1.5 0.633 0.666 0.690 0.699 0.690 0.666 0.633 0.660 
1.75 0.768 0.798 0.818 0.825 0.818 0.798 0.768 0.789 
2 0.872 0.893 0.907 0.912 0.907 0.893 0.872 0.884 
2.25 0.939 0.952 0.959 0.962 0.959 0.952 0.939 0.945 
2.5 0.975 0.981 0.985 0.986 0.985 0.981 0.976 0.977 

Table 6. Comparisons of H(( = oo, Pr) with J(Pr), of G(( = oo, Pr) with I(Pr), 
and of S(( = ~ ,  Pr) with K(Pr) 

Pr H( (  = 0% Pr) J(Pr) G(( = oo, Pr) I(Pr) S(( = oo, Pr) K(Pr) 

0,001 1.07 1.08 1.06 1.08 314 312 
0.01 1.19 1.20 1.15 1.17 61.1 60.7 
0.1 1.50 1.51 1.38 1.41 14.1 14.0 
1 2.33 2.35 1.97 2.00 4.00 3.98 

10 4.73 4.77 3.47 3.53 1.41 1.40 
100 11.9 12.0 7.26 7.39 0.611 0.607 

1000 34.0 34.2 16.8 17.1 0.314 0.312 
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6. SURFACE HEAT FLUX INCREASING 
EXPONENTIALLY WITH TIME 

If the surface heat flux is increased exponentially 
with time, i.e. q~ ~c exp(~2), then the surface tempera- 
ture rise is related to the surface heat flux by the 
following equation; 

0 ~ -  "~/p qw erf(~). (79) 
x/'(pc2) 

The propagation of the leading edge effect is again 
described as 

{ o[3q, ~ ~2,s 
- ~  j p = G*{~, Pr) {80) 

gflO 2 ]1 P = H * ( ~ , P r )  (81) 
¢ 2 

X ! 

1 
4-2t 2 - S*(~, Pr), (82) 

I0 
where G*(~, Pr), H*((, Pr) and S*(~, Pr) are functions 
of ~ and Pr. As a result of calculation, the behaviors 
of G*((, Pr), H*(~, Pr) and S*(~, Pr) were found quite 
similar to those Of Gff,, Pr), H((, Pr) and S((, Pr) respec- 
tively. Consequently, the same type of equations and 
conclusions as those derived in Section 5 were obtained. 
In particular, the values of G*(( = o¢, Pr), H*(~ = ~¢, Pr) 
and S*ff, = 0% Pr) precisely accorded with those of 
G(~ = 0% Pr), H((, = oc, Pr) and S(~ = 0% Pr) respec- 
tively. This result is expected since the surface tem- 
perature rise is proportional to the surface heat flux 
when ~ is sufficiently large. 

7. SUMMARY OF THE RESULTS 

The propagation of the leading edge effect in un- 
steady natural convection on a semi-infinite vertical 
plate was analysed for a power-function change and 
also for an exponential-function change in surface heat 
flux and in surface temperature. It was found that the 
influence of the type of transient can be expressed in 
terms of time-variables, each of which is nearly equal 
to one of the reduced times. The utility of approximate 
expressions in terms of the reduced times was 
illustrated. 

8. CONCLUDING REMARKS 

In this analysis the leading edge effect is assumed 
to propagate with the velocity determined from the 
temperature profile induced by unsteady conduction. 
Therefore the transition of the heat-transfer regime 
from conduction to convection is closely related with 

the fashion how this profile varies with time. This is 
also the case as to the stability of fluid layer with a 
time-dependent temperature profile. The onset of con- 
vection in fluid unsteadily heated from below was 
found to depend on the reduced time r0 [14]. This 
arises because there exists, in an approximate sense, 
one-to-one correspondence between a temperature 
profile and a value of the reduced time in the unsteady 
conduction heat transfer [15]. 
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EFFET DE BORD D'ATTAQUE DANS UNE CONVECTION NATURELLE 
INSTATIONNAIRE SUR UNE PLAQUE VERTICALE, AVEC TEMPERATURE 

DE SURFACE OU FLUX THERMIQUE DEPENDANT DU TEMPS 

R~sum/~ -Par la m6thode de Goldstein et Briggs, on analyse ta propagation de l'eflet de bord d'attaque 
dans la convection naturelle sur une plaque verticale et semi-infinie dont la surface est soumise ~ une 
temp6rature ou A un flux de chaleur croissant exponentiellement avec le temps, ou bien '~ un changement 
en fonction-puissance de la temperature ou du flux. L'influence du type d'6volution peut ~tre exprim6e 
en termes de plusieurs variables temporelles. On donne des expressions approch6es applicables ~ d'autres 

types d'6volution. 



Natural convection on a vertical plate 

DER ANSTROMKANTENEFFEKT BEI INSTATION,~RER, NAT~RLICHER 
KONVEKTION AN EINER VERTIKALEN PLATTE MIT ZEITABH~,NGIGER 

OBERFL,~CHENTEMPERATUR ODER W,~RMESTROMDICHTE 

Zusammenfassung--Nach den Methoden yon Goldstein und Briggs wird die Fortpflanzung des 
Anstr/Smkanteneffekts bei instation/~rer, natiirlicher Konvektion an einer halbunendlichen, vertikalen 
Platte untersucht. Ffir die Oberfl/ichentemperatur oder die W/irmestromdichte wurde eine zeitliche 
Zunahme nach einer Exponential--bzw. Potenzfunktion angesetzt. Der EinfluB der Art der Transiente 
konnte durch verschiedene Zeitvariablen erfaBt werden. Fi.ir andere Transienten wurden N~iherungs- 

l~sungen abgeleitet. 
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BTIH,qHHE HEPE~HEITI K P O M K H  HA HPOUECC HECTALIHOHAPHOITI 
ECTECTBEHHO17I KOHBEKI.IHH HA BEPTHKAflbHO17t rUIACTHHE r lPH 
H3MEH.qEMOITi CO BPEMEHEM TEMHEPATYPE HOBEPXHOCTH HTIH 

B E f l H q H H E  TEFIflOBOFO FIOTOKA 

AII~OTaHH~I- C NOMOmblO MeTO~ta FOnblltUTCfiHa H Bp~rrca aHaaHaJtpyeTcg atb0a~T nepe~nell 
KpOMKH llpH HecTaUHoHapHo~ eCTeCTBeHHOi~ KOHBCKUHH Ha noJIy6cCKOHCqHOI~ BCpTHKaJIbHOI~ nna- 
CTHHe, TeMnepaTypa rIOBCpXHOCTH KOTOpO~ HnH BC~I4qHHa no~ao~nMoro TCtl~oaoro nOTOKa yBCYIH- 
• II4BaIOTC~ 31¢CIIOHeHttHa~lbHO CO BDeMeHCM H.rIH H3MeHglOTCfl rio CTCIIeHHOfl OyHKLIIIH. BJIHgHHe Ttma 
HecTaUHOHapHOCTH MO)KHO onncaTb C HOMOIHbIO HCCKO.rIIaKHX BpeMCHHI~IX IICpCMeHHIalX. ['IpH- 

6JIH)KCHHbIe aMpageHHn FIpHMeHHMbl TgIOKC ]lJlfl ~pyrax HCCTaLIHoHapHblX yCJIOBHI~. 
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